Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Physiol Plant ; 176(3): e14325, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715548

RESUMO

Boosting plant immunity by priming agents can lower agrochemical dependency in plant production. Levan and levan-derived oligosaccharides (LOS) act as priming agents against biotic stress in several crops. Additionally, beneficial microbes can promote plant growth and protect against fungal diseases. This study assessed possible synergistic effects caused by levan, LOS and five levan- and LOS-metabolizing Bacillaceae (Bacillus and Priestia) strains in tomato and wheat. Leaf and seed defense priming assays were conducted in non-soil (semi-sterile substrate) and soil-based systems, focusing on tomato-Botrytis cinerea and wheat-Magnaporthe oryzae Triticum (MoT) pathosystems. In the non-soil system, seed defense priming with levan, the strains (especially Bacillus velezensis GA1), or their combination significantly promoted tomato growth and protection against B. cinerea. While no growth stimulatory effects were observed for wheat, disease protective effects were also observed in the wheat-MoT pathosystem. When grown in soil and subjected to leaf defense priming, tomato plants co-applied with levan and the bacterial strains showed increased resistance to B. cinerea compared with plants treated with levan or single strains, and these effects were synergistic in some cases. For seed defense priming in soil, more synergistic effects on disease tolerance were observed in a non-fertilized soil as compared to a fertilized soil, suggesting that potential prebiotic effects of levan are more prominent in poor soils. The potential of using combinations of Bacilliaceae and levan in sustainable agriculture is discussed.


Assuntos
Bacillus , Frutanos , Doenças das Plantas , Solanum lycopersicum , Triticum , Frutanos/metabolismo , Triticum/microbiologia , Triticum/metabolismo , Triticum/imunologia , Triticum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Bacillus/fisiologia , Botrytis , Imunidade Vegetal , Resistência à Doença , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Folhas de Planta/imunologia , Oligossacarídeos/metabolismo , Oligossacarídeos/farmacologia , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sementes/microbiologia , Sementes/imunologia , Ascomicetos
2.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293544

RESUMO

Metabolic syndrome is a leading medical concern that affects one billion people worldwide. Metabolic syndrome is defined by a clustering of risk factors that predispose an individual to cardiovascular disease, diabetes and stroke. In recent years, the apparent role of the gut microbiota in metabolic syndrome has drawn attention to microbiome-engineered therapeutics. Specifically, lactic acid bacteria (LAB) harbors beneficial metabolic characteristics, including the production of exopolysaccharides and other microbial byproducts. We recently isolated a novel fructophilic lactic acid bacterium (FLAB), Apilactobacillus waqarii strain HBW1, from honeybee gut and found it produces a dextran-type exopolysaccharide (EPS). The objective of this study was to explore the therapeutic potential of the new dextran in relation to metabolic syndrome. Findings revealed the dextran's ability to improve the viability of damaged HT-29 intestinal epithelial cells and exhibit antioxidant properties. In vivo analyses demonstrated reductions in body weight gain and serum cholesterol levels in mice supplemented with the dextran, compared to control (5% and 17.2%, respectively). Additionally, blood glucose levels decreased by 16.26% following dextran supplementation, while increasing by 15.2% in non-treated mice. Overall, this study displays biotherapeutic potential of a novel EPS to improve metabolic syndrome and its individual components, warranting further investigation.


Assuntos
Síndrome Metabólica , Animais , Camundongos , Abelhas , Síndrome Metabólica/metabolismo , Dextranos , Antioxidantes , Glicemia , Colesterol , Ácido Láctico
3.
Antonie Van Leeuwenhoek ; 115(9): 1101-1112, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35840814

RESUMO

A new exopolysaccharide (EPS) producing Gram-positive bacterium was isolated from the rhizosphere of Bouteloua dactyloides (buffalo grass) and its EPS product was structurally characterized. The isolate, designated as LB1-1A, was identified as Bacillus paralicheniformis based on 16S rRNA gene sequence and phylogenetic tree analysis. The EPS produced by LB1-1A was identified as a levan, having ß(2 → 6) linked backbone with ß(2 → 1) linkages at the branch points (4.66%). The isolate LB1-1A yielded large amount (~ 42 g/l) of levan having high weight average molecular weight (Mw) of 5.517 × 107 Da. The relatively low degree of branching and high molecular weight of this levan makes B. paralicheniformis LB1-1A a promising candidate for industrial applications.


Assuntos
Frutanos , Rizosfera , Bacillus , Peso Molecular , Filogenia , Poaceae , RNA Ribossômico 16S/genética
4.
Folia Microbiol (Praha) ; 67(1): 21-31, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34453701

RESUMO

An exopolysaccharide (EPS) synthesizing potentially probiotic Gram-positive bacterial strain was isolated from fish (Tor putitora) gut, and its EPS was structurally characterized. The isolate, designated as FW2, was identified as Lactobacillus reuteri through 16S rRNA gene sequencing and phylogenetic analysis. This isolate produces fructan-type EPS using sucrose as a substrate. Based on 13C-NMR spectroscopy, methylation analysis and monosaccharide composition, the EPS was identified as a linear levan polymer with fructose as main constituent linked via ß(2 → 6) linkages. Based on molecular weight (MW) distribution, two groups of levan were found to be produced by the isolate FW2: one with high MW (4.6 × 106 Da) and the other having much lower MW (1.2 × 104 Da). The isolate yielded about 14 g/L levan under optimized culturing parameters including aeration conditions, pH, temperature and substrate concentration. The obtained bimodal molecular weight linear levan is the first of its type to be synthesized by a L. reuteri isolate from fish gut. Bimodal molecular weight prebiotic levan together with the probiotic potential of the producing strain would provide a new promising synbiotic combination for use in aqua culture.


Assuntos
Limosilactobacillus reuteri , Animais , Frutanos , Limosilactobacillus reuteri/genética , Peso Molecular , Filogenia , RNA Ribossômico 16S/genética
5.
Curr Microbiol ; 77(9): 2128-2136, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32661680

RESUMO

Antibiotics are generally applied for treatment or as subtherapeutic agents to overcome diseases caused by pathogenic bacteria including Escherichia coli, Salmonella and Enterococcus species in poultry. However, due to their possible adverse effects on animal health and to maintain food safety, probiotics, prebiotics, and synbiotics have been proposed as alternatives to antibiotic growth promoters (AGPs) in poultry production. In this study, the effects of prebiotics on the augmentation of broiler's indigenous gut microbiology were studied. Day old 180 broilers chicks were divided into four treatment groups: G, L, C1, and C2. The groups G and L were fed with basal diet containing 3% dextran and 3% levan, respectively. Control groups were fed with basal diets without antibiotic (C1) and with antibiotics (C2). The experimental groups showed decreased mortality as compared to control groups. After 35 days, the chickens were euthanized and intestinal fluid was analyzed for enteric pathogens on chromogenic agar plates and by 16S rRNA gene sequencing. Inhibition of the growth of E. coli and Enterococcus was observed in groups G and L, respectively, whereas Salmonella was only present in group C1. Also, high populations of lactic acid bacteria were detected in the intestine of prebiotic fed birds as compared to controls. These results depict that dextran and levan have the potential to replace the use of antibiotics in poultry feed for inhibiting the growth of common enteric pathogens. To the best of our knowledge, this is the first study where effects of dextran and levan on intestinal microbiota of broilers have been reported.


Assuntos
Doenças das Aves Domésticas , Probióticos , Ração Animal/análise , Animais , Galinhas , Dextranos , Dieta , Escherichia coli , Frutanos , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...